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Abstract
We show that the 3D wedge filling transition in the presence of short-ranged
interactions can be first order or second order depending on the strength of
the line tension associated with the wedge bottom. This fact implies the
existence of a tricritical point characterized by a short-distance expansion which
differs from the usual continuous filling transition. Our analysis is based on an
effective one-dimensional model for the 3D wedge filling, which arises from the
identification of the breather modes as the only relevant interfacial fluctuations.
From such analysis we find a correspondence between continuous 3D filling at
bulk coexistence and 2D wetting transitions with random-bond disorder.

Fluid adsorption in micropatterned and sculpted geometries has become the subject of intense
study over the last decade. Highly impressive technological advances which allow the tailoring
of micro-patterned and structured solid surfaces on the nanometre to micrometre scale [1]
are a landmark in the development of the emerging microfluidic industry [2], which aims at
miniaturizing chemical synthesis plants or biological analysis equipment in much the same
way as the silicon chip brought about the electronics revolution. However, the theoretical
understanding of this phenomenon is far from being complete. Recent studies of filling
transitions for fluids in 3D wedges show that interfacial fluctuations are greatly enhanced
compared with wetting at flat substrates [3, 4]. The control of such enhanced interfacial
fluctuations is crucial for the effectiveness of the microfluidic devices. Fortunately, there are
simple theoretical approaches which take into account these effects. For example, effective
Hamiltonian predictions for the critical exponents at continuous (critical) wedge filling with
short-ranged forces have been confirmed in large scale Ising model simulation studies [5].
Similar experimental verification of the predicted geometry-dominated adsorption isotherms
at complete wedge filling [6] raises hopes that the filling transition itself and related fluctuation
effects will be observable in the laboratory. We further develop the theory of wedge filling in
this paper, focusing on the emergence of a new type of continuous filling: tricritical filling.
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Figure 1. Schematic illustration of a typical interfacial configuration and relevant length scales for
a fluid adsorption in a 3D wedge.

First we briefly review the fluctuation theory of 3D wedge filling. Consider the interface
between a bulk vapour at temperature T and saturation pressure with a 3D wedge characterized
by a tilt angle α. Macroscopic arguments dictate that the wedge is partially filled by liquid if
the contact angle θ > α and completely filled if θ < α [7]. The filling transition refers to the
change from microscopic to macroscopic liquid adsorption as T → Tf , at which θ(Tf) = α,
and may be first order or continuous (critical filling). Both of these transitions can be viewed
as the unbinding of the liquid–vapour interface from the wedge bottom. Characteristic length
scales are the mean interfacial height above the wedge bottom lW, the roughness ξ⊥ and the
longitudinal correlation length ξy , measuring fluctuations along the wedge (see figure 1). The
relevant scaling fields at critical filling are θ − α and the bulk ordering field h (which is
proportional to the pressure difference with the saturation value). At coexistence (h = 0) we
define critical exponents by lW ∼ (θ − α)−βW and ξy ∼ (θ − α)−νy . The roughness can be
related to ξy by the scaling relationship ξ⊥ ∼ ξ

ζW
y , where ζW is the wedge wandering exponent.

For short-ranged forces, ζW = 1/3.
For shallow wedges, i.e. α � 1, the free energy of an interfacial configuration can be

modelled by an effective Hamiltonian based on the capillary wave model for wetting of planar
substrates [8]. However, an analysis of this model [3] shows that the liquid–vapour interface
across the wedge is approximately flat and soft-mode fluctuations arise from local translations
in the height of the filled region along the wedge. These breather modes are the only relevant
fluctuations in the continuous filling phenomena,and can be taken into account by the following
effective Hamiltonian [3]:

HW[l0] =
∫

dy

{
�l0

α

(
dl0

dy

)2

+ VW(l0)

}
(1)

where l0(y) is the local height of the interface at position y along the wedge bottom and � is
the liquid–vapour surface tension. Note that the effective bending term resisting fluctuations
along the wedge is proportional to the local interfacial height. The effective binding potential
VW(l0) for l0 � lπ , where lπ is the mean wetting film thickness for a planar substrate, is given
(up to irrelevant additive constants) by [3]

VW(l0) ≈ h(l0 − lπ )2

α
+
�(θ2 − α2)l0

α
+

∫ (l0−lπ )/α

−(l0−lπ )/α
dxW (l0 − α|x |) (2)

where W (l) is the binding potential between the gas–liquid interface and a planar substrate.
Note that the mean field result for lW is recovered by minimizing VW(l0) for l0 > lπ , which
is an important check on the self-consistency of the method [3]. In addition to a hard-wall
repulsion for l0 < 0, the potential VW(l0) contains a short-ranged attraction which may be
modified by micropatterning a stripe along the wedge bottom, so as to weaken the local wall–
fluid substrate and therefore strengthen the interfacial binding. This observation will be crucial
for the existence of tricritical filling, since with this decoration it may be possible to bind the
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interface to the wedge bottom at the filling boundary θ = α and h = 0. For later convenience,
hereafter we will set h = 0 in our discussion of continuous filling.

The quasi-one-dimensional nature of the effective Hamiltonian equation (1) allows us to
use the transfer-matrix formalism. In the continuum limit the partition function is defined as
a path integral [9] (setting kBT = 1 for convenience)

Z [lb, la,Y ] =
∫

Dl0 exp(−HW[l0]) (3)

where Y is the wedge length and la and lb are the endpoint heights. The position-dependent
stiffness introduces some ambiguity in the definition of the path integral. This problem was
already pointed out in [10] and is related to the well known ordering problem in the quantization
of classical Hamiltonians with position-dependent masses. Similar issues also arise in solid
state physics [11]. Borrowing from the methods used to overcome these difficulties we use
the following definition:

Z [lb, la,Y ] = lim
N→∞

∫
dl1 . . . dlN−1

N∏
j=1

K (l j , l j−1,Y/N) (4)

where l0 ≡ la and lN ≡ lb, and K (l, l ′, y) is defined as

K (l, l ′, y) =
√
�

√
ll ′

απy
exp

(
−�

√
ll ′

αy
(l − l ′)2 − yVW(l)

)
. (5)

In the continuum limit the partition function becomes

Z(lb, la,Y ) =
∑

n

ψn(lb)ψ
∗
n (la)e

−En Y (6)

where the complete orthonormal set satisfy(
− α

4�

∂

∂l

[
1

l

∂

∂l

]
+ VW(l)− 3α

16�l3

)
ψ = Eψ. (7)

In the thermodynamic limit Y → ∞ we obtain the probability distribution function (PDF) for
the midpoint interfacial height PW(l0) = |ψ0(l0)|2, the wedge excess free energy fW = E0

and the longitudinal correlation length ξy = 1/(E1 − E0). At this point we must remark that
any definition of the path integral which is invariant upon exchanging la and lb leads to an
Schrödinger equation similar to equation (7) but with a different coefficient for the extra 1/ l3

term in the effective binding potential [10].
The change of variables λ = √

8�/αl3/2/3 and ψ(l) = (2�l/α)1/4φ(λ(l)) [12]
transforms the equation (7) to

−1

2

d2φ(λ)

dλ2
+

(
VW[l(λ)] − 5

72λ2

)
φ(λ) = Eφ(λ) (8)

with l(λ) = (
3λ/

√
8�/α

)2/3
. In general, there will be an interfacial bound state at bulk

coexistence for θ = α if the strength of the small l0 attraction between the gas–liquid interface
and the substrates, which we will denote as u, is greater than some value uc. Consequently,
the filling transition is first order if u > uc and critical if u < uc. Tricritical filling is
observed when u − uc emerges as a new relevant field (in the renormalization-group sense).
If W (l) ∼ −a/ l p + b/ lq , different scenarios may arise as the range of the binding potential is
varied. In particular, for p > 4 the long-range behaviour of VW is dominated by the 1/ l3 term
for θ = α, so the filling phenomena are fluctuation dominated. This finding is consistent with
the existence of two different fluctuation regimes for critical filling: mean-field if p < 4 and
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Figure 2. Phase diagrams for (a) filling and (b) wetting transitions. The thick and dashed lines in
both diagrams correspond to continuous and first-order boundaries between bound and unbound
interfacial states, respectively. The arrows show representative paths along which continuous
unbinding occur: (i) and (ii) for tricritical filling (critical wetting) and (iii) for critical filling
(complete wetting), respectively. The filled circles represent the tricritical filling and critical wetting
points, respectively. See text for explanation.

fluctuation-dominated regime if p > 4 [3]. In the fluctuation-dominated regime, examination
of equation (8) shows that there is an analogy between 3D continuous filling and 2D continuous
wetting (see figure 2), where the role at wetting of the bulk ordering field h and the potential
strength w are played by θ − α and u for filling phenomena, respectively. In particular, 3D
tricritical (critical) filling is analogous to 2D critical (complete) wetting, respectively. Different
critical exponents which characterize the divergence of length scales can be defined. In addition
to the critical filling critical exponents βW and νy defined along route (ii) in figure 2(a) (see
above), we can define new critical exponents for tricritical filling at θ = α (route (i) in
figure 2(a)) as

lw ∼ (u − uc)
−β∗

W , ξy ∼ (u − uc)
−ν∗

y (9)

and ξ⊥ ∼ ξ
ζ ∗

W
y , where ζ ∗

W is the tricritical wandering exponent which in general may be different
from ζW (in contrast with the wetting case). More generally, in the vicinity of the tricritical
point we anticipate scaling e.g. ξy ∼ |u−uc|−ν∗

y
[
(θ − α)|u − uc|−�∗]

with the gap exponent
�∗. Thus along route (ii) ξy ∼ (θ − α)−ν

∗
y /�

∗
.

We focus now on the case of short-ranged forces as the prototype of the fluctuation-
dominated regime. In addition to the hard-wall condition, VW(l0) can be modelled as a
contact-like attraction with strength u. An analysis of equation (7) for l0 → 0 shows that
the short-distance expansion of the PDF is either PW ∼ l0 or PW ∼ l3

0 . We anticipate that
the former corresponds to tricritical behaviour and the latter to critical filling. It is remarkable
that thermodynamic consistency at critical filling is ensured as the local density at the wedge
bottom is non-singular, i.e. ρw(0)−ρl ∼ T − Tf , where ρl is the bulk liquid density [14]. This
property is only obtained if the partition function is defined by equations (4) and (5). Thus,
the ambiguity in its definition can be removed by imposing this regularity condition on the
short-distance expansion of the interfacial height PDF.

We report now our explicit results (details will be presented elsewhere). Along route
(i) we find that there is only one bound solution to equation (7) for u > uc ≈ 1.358 with
E0 ∝ (u − uc)

3 and associated PDF

PW(l0) = 6
√

3π

ξu

l0

ξu

[
Ai

(
l0

ξu

)]2

(10)

where Ai(x) is the Airy function and in the scaling limit ξu ∼ |u − uc|−1. Thus lW ∼ ξ⊥ ∝
(u − uc)

−1 and ξy ∝ (u − uc)
−3 identifying β∗

W = 1, ν∗
y = 3 and obtaining ζ ∗

W = ζW = 1/3.
As predicted, the short-distance behaviour of the PDF is linear with l0.
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Figure 3. Plot of the scaled PDF for ε = −1.5 (thick dashed line), and along routes (ii) and (iii)
in figure 2(a), i.e. for ε ≈ 1.086 (thick continuous line) and ε ≈ 1.639 (thick dot–dashed line),
respectively. For comparison, the PDF from equation (10) with ξu ≈ 1.968ξθ (which corresponds
to ε = −1.5, see inset) is also plotted (thin dashed line). Finally, the scaled PDF obtained in [10]
is also shown (thin dot–dashed line). Inset: plot of ε as a function of ξθ /ξu for u < uc (continuous
line) and u > uc (dashed line).

(This figure is in colour only in the electronic version)

On the other hand, the scaling of the PDF for θ > α is given by (see also figure 3)

PW(l0) ∝ l0 exp

[
2εl0

ξθ
− 2l2

0

ξ2
θ

]
H 2
ν

(√
2

l0

ξθ
− ε√

2

)
(11)

where ξθ = �−1/2[(θ/α)2 − 1]−1/4, ε = �E0ξ
3
θ /α, ν = ε2/4 − 1/2 and Hν(x) is the Hermite

function [13]. The value of ε is obtained as the smallest solution of the following equation:

± �
[− 1

3

]
3−2/3

�
[

1
3

] ξθ

ξu
= ε +

(
ε2

√
2

− √
2

) Hε2/4−3/2
(− ε√

2

)
Hε2/4−1/2

(− ε√
2

) (12)

where the positive (negative) sign corresponds to u > uc (u < uc), respectively. The inset
of figure 3 plots the solution of this equation. As anticipated, note that scaling is obeyed in
the vicinity of the tricritical point as the wedge excess free energy fW ∼ ξ−3

θ F±(ξθ /ξu). For
u > uc and ξθ /ξu � 1, we have checked numerically that the PDF (11) converges to the
expression given by equation (10) for the corresponding value of ξu given by equation (12).
Thus, the interface remains bound to the substrate when θ → α, in agreement with the
first-order character of the filling transition. The thermodynamic path (ii) to the tricritical
point corresponds to ξu → ∞, which corresponds to ε ≈ 1.086. Thus along this route
lW ∼ ξ⊥ ∝ (θ − α)−1/4, similar to critical filling. From analysis of the spectrum it is also
possible to show that ξy ∝ (θ − α)−3/4, so the tricritical gap exponent �∗ = 4. Finally, for
thermodynamic paths (iii) far from the tricritical point, i.e. ξu → 0, we have found that the
scaling of the PDF is of the form shown in equation (11) with ε ≈ 1.639. Note that PW ∼ l3

0
as l0 → 0, in agreement with our previous statement. This condition is not fulfilled by the
solution presented in [10], although globally it does not differ too much from our exact solution
(see figure 3).

We finish by mentioning a remarkable connection for short-ranged forces between 3D
wedge filling and 2D wetting with random-bond disorder [15]. The critical exponents
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corresponding to tricritical and critical wedge filling can be obtained from generalized random-
walk methods [16] in terms of the wedge wandering exponent ζW. In particular, they are
found to have the same dependence of the critical exponents for critical and complete wetting,
respectively, but in terms of an effective 2D wandering exponent equal to 2ζW. For short-
ranged forces (ζW = 1/3), this implies that the set of critical exponents is the same as for
2D random-bond disorder [17]. These predictions may certainly be tested in Ising model
simulation studies and would be a stringent test of the theory of 3D wedge filling.
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